

APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS

Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T.

Feb 2014

Somerset House 11 Somerset Place GLASGOW G3 7JT Tel:0141 354 6579 Fax:0141 354 6549

	Project :	Apollo Site Tread	k		חוום
LHLLULHIIUII SHEEI	Element :	Brief			πωμ
	Job Number :	R0197	By : anw	Date:Feb13	
	Document No :	001	Checked :	Date:Feb13	HLHII WHIIE DESIGII

Brief

To carry out a design check on the Apollo Site Tread scaffold step to the relevant Standards and Codes.

Layout

	Project :	Apollo Site Trea	ad		
CHLCULH I IUII SHEE I	Element :	Brief			πωμ
	Job Number :	R0197	By : anw	Date:Feb13	
	Document No :	001	Checked :	Date:Feb13	HLHII WHIIE DESIGII

Factor of safety From BS EN 12811-1

1.1.1.1 Partial safety factors for actions, gF

Except where stated otherwise, the partial safety factors, gF, shall be taken as follows:

Ultimate limit state

 $\gamma_F = 1,5$ for all permanent and variable loads $\gamma_F = 1,0$ for accidental loads

Serviceability limit state

 $\gamma_{\rm F} = 1,0$

10.3.2.2 Partial safety factors for resistance gM

For the calculation of the design values of the resistances of steel or aluminium components the partial safety factor, . For components $\gamma_{M}=1,1$

of other materials the partial safety factor, gM, is to be taken from relevant standards.

	Project :	Apollo Site Tread	k		
LHLLULHIIUII SHLLI	Element :	Section propert	πωυ		
	Job Number :	R0197	By : anw	Date:Feb13	חו חם נושודב הבפופה
	Document No :	001	Checked :	Date:Feb13	HLHII WHIIE DESIGII

Section properties

From autocad massprop using the section as shown below This is conservative as the section chosen is the minimum

		6mm		
	r=6mm	•• # •• # •• 1	1 14 1 14 14 1	an an ann an
		A=	441 mm2	
		I _x =	123982 mm4	
		$I_{v}=$	3691175 mm4	
		r _x =	16.8 mm	
		r _v =	91.5 mm	
		W _{el,x} =	4129 mm3	
		W _{el,y} =	32810 mm3	
	Slenderness	C/t=	213/6	C= 225-2*6 = 213mm t= 6mm
		=	35.50	
	Section is class Material is mild stee	so plastic design a el fy=275N/mm2	allowable but elastic d	lesign chosen
Moment capacity	From BS EN 1993-	1-1- 6.2.5		
		M _{c,Rd} =	$W_{el}f_y/\gamma_{M0}$	W _{el} = 4.13cm3 f _y = 275N/mm2 γ _{M0} = 1.1
		= 4.	13*275/1100	
		=	1.03 kNm	
Shear capacity	From BS EN 1993-	1-1- 6.2.6		
		$V_{c,Rd} = A_v$	(f _y /sqrt(3))/γ _{M0} 0*/275/22rt/2)\/1100	Av= 2*45*2 = 180mm2 f _y = 275N/mm2
		= 18 =	25.98 kN	
Lateral Torsional E	Buckling			
	From BS EN 1993-	1-1- 6.3.2.1		
	As bending is abou	t minor axis LTB ve	erification is not requir	ed.

	Project :				
LHLLULHIIUII SHEEI	Element :	Design			TIWU
	Job Number :	R0197	By : anw	Date:Feb13	
	Document No :	001	Checked :	Date:Feb13	HLHII WHITE DESIGIT
			1		•
Loading					
	As before				
	UDL on stair	W=	. 1.00) kN/m2	
	and point load	W=	1.50) kN on 200mm	by 200mm
Moment					
	so for UDL on 225m	nm wide stair w	ith span of 1.6m	1	
)	
		IVI _{Ed} =	γ.w.d.L /c	γ=	- 1.5
					41-N1/ 0
				W=	
				D=	= 0.22011 1.6m
		_	. 1 5*1*0 225*1	L=	= 1.011
		-	• 1.5 1 0.225 1. • • • • • • • • • • • • • • • • • • •	l kNm	
		-	0.14		
	for a point load of 4	kN over a width	of 200mm		
		Wu=	. γW	γ=	= 1.5
		=	: 1.5*1.5	5	
		=	2.25	5 kN	
			Wu		
		($\overline{\mathbf{m}}$		
	/	\	<u> </u>		
			\leftrightarrow S=0.2 \rightarrow	•	
	Ra		1.6m	R	N N
	i ta	<	1.011	\longrightarrow)
		Ra=	: Wu/2	wu=	= 2.25kN
		=	2.25/2	2	
		=	1.13	3	
		M _{Ed} =	Ra.L/2-γ.Wu.s/	/16	
				S=	= 0.2m
				Wu=	= 2.25kN
				B=	= 0.225m
				L=	= 1.6m
		=	1.13*1.6/2-2*2	.25*0.2/16	
		=	0.85	5 kNm	
	from previous calcu	lations			
		M _{c,Rd} =	1.03	s KNM	_
		>	0.85	5	ok

	Project :	Apollo Site Tread	k		
CHLCOLHIIUII SHEEI	Element :	Design			HWD
	Job Number :	R0197	By : anw	Date:Feb13	חו חם וווווודב הברורם
	Document No :	001	Checked :	Date:Feb13	HLHII WHIIE DESIDII
Shear	so for UDL on 225m	ım wide stair wi	ith span of 1.6m		
		V _{Ed} =	γ.w.B.L/2	γ=	1.5
		=	1.5*1*0.225*1.€ 0.27	₩= B= L= \$/2 kN	1kN/m2 0.225m 1.6m
	for a point load of 4	kN over a width	of 200mm		
		Wu=	γW	γ=	1.5
		=	1.5*1.5 2.25	kN	
		\cap	Wu		
	1	Х	< <u>s=0.2</u> →		
	Ra	<	1.6m	Rb	
		Ra= = =	Wu/2 2.25/2 1.13	Wu=	2.25kN
		V _{Ed} = =	Ra 1.13	kN	
	from previous calcu	lations			
		M _{c,Rd} = >	25.98 1.13	kN	ok
Deflection	for central point load	d of 1.5kN			
		d=	WL ³ /48EI	W= L= E=	1.5kN 1.6m 205kN/mm2 123982mm4
		=	1500*1600^3/(4	48*205E3*12398	2)
		=	5.04	mm	
	From BS EN 12811	-1 the max defle	ection is		
		d= = = >	L/100 1600/100 16.00 5.04	L= mm	1600mm ok

	Project :	Apollo Site Tread	k		
LHLLULHIIUII SHEEI	Element :	Design			πωD
	Job Number :	R0197	By : anw	Date:Feb13	
	Document No :	001	Checked :	Date:Feb13	HLHII WHIIE DESIGII

Rotation

If the loading was eccentric, ie at the step edge the moment applied to the support couplers would be

M=	Wu.la	Wu= 2.25kN
		la= 0.225/2
		= 0.11m
=	2.25*0.11	
=	0.248 kNm	

This is conservative as the load is spread over a patch not a point.

this is resisted by two couplers so the twisting moment is

M= 0.124 kNm

From BS EN 12811-1 the resistance to rotation of a double coupler is

Mr=	0.130 kNm	
>	0.124	ok

If the load is considerd as a patch 200mm wide on a 225mm wide step then the eccentricity

la= 225/2	2-200/2	
=	12.50 mm	
and M= Wu.k	à	
= 2.25*	0.0125	
=	0.03 kNm	
<<	0.13	ok

	Project :	Apollo Site Tread	k		
LHLLULHIIUII SHEEI	Element :	Stringer			πωυ
	Job Number :	R0197	By : anw	Date:Feb13	
	Document No :	001	Checked :	Date:Feb13	HLHII WHIIE DESIGII

Length of stringer

From BS EN 12811-1, the load on the stringer is :

The structure of the stairways shall be capable of supporting a uniformly distributed load of 1,0 kN/m2 on all treads and landings within a height of 10 m.

so the stringer will carry the load as shown below

Moment M= 1.1 kNm Axial P= kN for 8m Angle ^o Moment kNm Combined Axial kN Length m 0.96 1.33 1.00 2.88 30 35 0.93 1.55 1.00 2.76 40 0.90 1.76 1.00 2.62 45 1.97 1.00 2.46 0.85 50 0.81 2.17 1.00 2.28 55 0.75 2.37 1.00 2.07

Above table found by Excel Goal seeking

	Project :	Apollo Site Tread	k		
LHLLULHIIUII SHEEI	Element :	Summary	πωμ		
	Job Number :	R0197	By : anw	Date:Feb13	
	Document No :	001	Checked :	Date:Feb13	HLHII WHITE DESIGII

Summary

The scaffold step has been checked for the required loading and found to be adequate for a maximum width of 1.5m.

Loading from BS EN 12811-1 Cl6.2.4 Access routes

For stairways built for access to a working scaffold, each tread and landing shall be designed to support the more unfavourable of: either

a) a single load of 1,5 kN in the most unfavourable position, assumed to be uniformly distributed over an area of 200 mm x 200 mm or over the actual width if it is less than 200 mm,

or

b) an uniformly distributed load of 1,0 kN/m2.

The structure of the stairways shall be capable of supporting a uniformly distributed load of 1,0 kN/m2 on all treads and landings within a height of 10 m.

The stringer which supports the steps requires to be supported by standards at a spacing as shown in the table below dependant on the angle of the stair.

Angle	Standard
Degrees	Spacing m
30	2.88
35	2.76
40	2.62
45	2.46
50	2.28
55	2.07